Work, Power and Energy Transfer - Questions and Answers

Modified: 15th Sep 2017
Wordcount: 1226 words

Disclaimer: This is an example of a student written essay. Click here for sample essays written by our professional writers.
Any scientific information contained within this essay should not be treated as fact, this content is to be used for educational purposes only and may contain factual inaccuracies or be out of date.

Cite This

Amy Harris 

Task 1

Packing cases of mass 25kg are to be pushed onto a ramp by use of a hydraulic ram as shown above. The coefficients of static and dynamic friction between the box and surface are 0.7 and 0.4 respectively. Assuming uniform acceleration at all stages.

Calculate:

a) The maximum force required in the ram to push the crate onto the slope with an acceleration of 0.25ms

b) The velocity of the crate as it leaves the top part of the ramp assuming this part of the movement takes 1 second.

c) The velocity of the crate at the bottom of the ramp

d) The distance travelled after leaving the ramp and continuing in a straight line (assume a smooth curve at the bottom of the slope).

e) The total time for the entire movement of the crate.

Corrections to Task 1:

Task 2

A pile driver hammer of mass 300kg is raised to a height of 3.5m before being released. If there is no rebound after impact with a pile of mass 500kg and the pile is driven 0.1m into the ground, Calculate:

a) The initial potential energy of the hammer before release.

b) The velocity of the hammer immediately before impact

c) The velocity of the hammer and pile immediately after impact

d) The deceleration of the pile assuming it is uniform

e) The ground resistance

Corrections to Task 2:

Task 3

Find the velocity of the hammer immediately before impact for the problem given in Q2 above using D'Alembert's Principle and write a report comparing it with the conservation of energy method previously used.

How do the two methods differ and what were the discrepancies in the results?

The D'Alembert's Principle can; in some parts, be very similar to the second law motion which Newton introduced. He thought that the law could be rewritten so that we can achieve the appearance of an equilibrium. This principle was made by Jean le Rond d'Alembert, he was a French mathematician in the 18th century. It is explained as reducing 'a problem in dynamics to a problem in statics' (The Editors of Encyclopaedia Britannica, 2016). I found that when referring to 'the time derivatives of the momenta of the system' (Wikipedia, June 2016) D'Alembert's principle shows this equation 'F-ma=0' (The Editors of Encyclopedia Britannica, 2016). I researched this formula and found that 'F=ma'(classes R., no date) and newtons second law states that 'F= mg' (Kearsley, no date) This means that when no external force is present we may use the formula mg-ma=0. D'alemberts principle is different to the conservation of energy method as d'alemberts uses the equilibrium of forces when referring to a dynamic system and the conservation of energy method states that in a closed dynamic system the energy total equals zero. They may differ sometimes as they are dealing with different values to come out with the answer, also aspects such as human error when rounding comes into play as a small rounding error can sometimes affect the answer. The conservation of energy method is used more than the that of D'Alembert's, perhaps because it is not often that a system is balanced completely which is when D'Alembert's is used.

The answer I got is the same as I do with the other method, this shows that this method can be used to prove the answer found in task 2.      

Bibliography

References:

 

Cite This Work

To export a reference to this article please select a referencing style below:

Give Yourself The Academic Edge Today

  • On-time delivery or your money back
  • A fully qualified writer in your subject
  • In-depth proofreading by our Quality Control Team
  • 100% confidentiality, the work is never re-sold or published
  • Standard 7-day amendment period
  • A paper written to the standard ordered
  • A detailed plagiarism report
  • A comprehensive quality report
Discover more about our
Essay Writing Service

Essay Writing
Service

AED558.00

Approximate costs for Undergraduate 2:2

1000 words

7 day delivery

Order An Essay Today

Delivered on-time or your money back

Reviews.io logo

1858 reviews

Get Academic Help Today!

Encrypted with a 256-bit secure payment provider